university school

of of advanced
tyumen studies
Information ins

Low/high-level, interpreted,

TCChHOlogy = advanced compiled. Syntax structures.

Fabio Grazioso - April 2018

lecture summary

<

&>

summary

Object Oriented Programming (from last lecture)

low level languages

@

"'E‘

machine language
assembly language

high level language

Q@

main control structures
¢ for cycle

¢+ if-then structure

Algorithms examples

"':?

&

search

sort

Object Oriented Programming

Object-oriented Programming

object-oriented programming is not primarily concerned with
the details of program operation. Instead, it deals with the
overall organization of the program.

Most individual program statements in C++ are similar to
statements in procedural languages, and many are identical to
statements in C. Indeed, an entire member function in a C++
program may be very similar to a procedural function in C.

It is only when you look at the larger context that you can
determine whether a statement or a function is part of a
procedural C program or an object-oriented C++ program.

E@ Lafore p15

Characteristics of Object-Oriented Languages

An object has the same relationship to a class that a variable has to a data type. An object is said to be

an instance of a class, in the same way my 1954 Chevrolet is an instance of a vehicle.

+ The data items within a class are called data members (or sometimes member data). There can be any
number of data members in a class, just as there can be any number of data items in a structure. The
data member somedata follows the keyword private, so it can be accessed from within the class, but

not from outside.
Member Functions
Member functions are functions that are included within a class. In some object-oriented languages

member functions are called methods; some writers use this term in C++ as well.
However, when member functions are small, it is common to compress their definitions this way to

o

save space.

Functions Are Public, Data Is Private

+ Usually the data within a class is private and the functions are public. This is a result of the way
classes are used. The data is hidden so it will be safe from accidental manipulation, while the functions
that operate on the data are public so they can be accessed from outside the class. However, there is no
rule that says data must be private and functions public; in some circumstances you may find you’ll

need to use private functions and public data.

E@ Lafore p217

Data hiding

¢ The body of the class contains two unfamiliar
keywords: private and public. A key feature of object-
oriented programming is data hiding.

¢ Data hiding, means hiding data from parts of the
program that don’t need to access it. More specifically,
one class’s data is hidden from other classes. Data
hiding is designed to protect well-intentioned
programmers from honest mistakes.

E@ Lafore p217

Examples

¢ Defining the Class
+ Here's the definition (sometimes called a specifier) for the class smallobj, copied from the SMALLOB]J listing:

class smallobj //define a class
{
private:
int somedata; //class data
public:
void setdata(int d) //member function to set data

{ somedata = d; }
void showdata() / /member function to display data

{ cout << “\nData is “ << somedata; }

}:

E@ Lafore p218

Examples

Using the Class

+ Now that the class is defined, let's see how main() makes use of it. We'll see how objects are defined, and, once defined, how
their member functions are accessed.

Defining Objects

The first statement in main()

o

smallobj 81, s2;

+ defines two objects, s1 and s2, of class smallobj. Remember that the definition of the class smallobj does not create any
objects. It only describes how they will look when they are created, just as a structure definition describes how a structure
will look but doesn’t create any structure variables. It is objects that participate in program operations. Defining an object is
similar to defining a variable of any data type: Space is set aside for it in memory.

+ Defining objects in this way means creating them. This is also called instantiating them. The term instantiating arises because
an instance of the class is created. An object is an instance (that is, a specific example) of a class. Objects are sometimes called
instance variables.

Calling Member Functions

+ The next two statements in main() call the member function setdata():
sl.setdata(1066);
s2.setdata(1776);

E@ Lafore p217

[ET@ Lafore p222

low level code

it is CPU-specific

the elementary instructions of the CPU are used
PROs:

¢ fast

¢ small memory usage

CONis:
¢+ difficult to use

¢ non-portable

assembly

+ the first “abstraction” from machine code is to use
mnemonic codes.

+ in this case, a “translator” will turn mnemonic code into
machine code.

+ this translator is called “assembler”.

examples

+ arithmetic shift left

¢ read memory location

algorithms

reference book

THOMAS H. CORMEN
CHARLES E. LEISERSON
RONALD L. RIVEST
CLIFFORD STEIN

THIRD EDITION

sort algorithm

the sorting problem:

Input

A sequence of n numbers (ai; az; ...; an).
Output

A permutation (reordering) (a*1; a*2; ...; a*n)
of the input sequence such that:

a*l E a*z E e s @ E a*n.

E@ Cormen p5

Insertion sort

[E@ Cormen pl7

Insertion sort

1 forj = 2to A.length

2 key = A[j]

3 // Insert A|j]| into the sorted sequence A[l..j — 1].
4 i =j-1

5 while i > 0 and A[i] > key

6 Ali + 1] = Ali]

7] =1 -—1

8 Ali + 1] = key

E@ Cormen pl8

Insertion sort

4 5 & 1 2 6

6|13 (b) 2 4 3

1 2 3 4 5 6 1 2 3 & 5 ©
d [2]4 1]2]3]4]5]6

2 516 3 (e)
&A A LA A

Figure 2.2 The operation of INSERTION-SORT on the array A = (5, 2,4, 6, 1, 3). Array indices
appear above the rectangles, and values stored in the array positions appear within the rectangles.
(a)—(e) The iterations of the for loop of lines 1-8. In each iteration, the black rectangle holds the
key taken from A[/], which is compared with the values in shaded rectangles to its left in the test of
line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows

indicate where the key moves to in line 8. (f) The final sorted array.

.

= Cormen pl8

Hard problems

What is an efficient algorithm?

* One measure of efficiency is speed, i.e., how long an
algorithm takes to produce its result.

Since the speed is most often a function of the input
length, we want that this function is linear, or polynomial.

* For sure, not exponential!

¢ There are some problems, for which no efficient solution
is known.

data structure

+ The indexed sequence is an example of data structures.

A data structure is a way to store and organize data in
order to facilitate access and modifications.

No single data structure works well for all purposes,
and so it is important to know the strengths and
limitations of several of them.

ER Cormen p9

search algorithm

+ a search algorithm is any algorithm which solves the
search problem, namely, to retrieve information stored
within some data structure (e.g. a list).

binary search tree

[ET@ Cormen p287

	BL7-Low-high-level_interpreted_compiled_ algorithm copy.001
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.002
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.003
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.004
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.005
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.006
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.007
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.008
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.009
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.010
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.011
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.012
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.013
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.014
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.015
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.016
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.017
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.018
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.019
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.020
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.021
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.022
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.023
	BL7-Low-high-level_interpreted_compiled_ algorithm copy.024

